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Abstract

The most general physical boundary S-matrix for the open XXZ spin chain in
the non-critical regime (cosh(n) > 1) is derived starting from the bare Bethe
ansatz equations. The boundary S-matrix as expected is expressed in terms of
I',-functions. In the isotropic limit the corresponding results for the open XXX
chain are also reproduced.

PACS number: 02.30.1k

1. Introduction

The open XXZ model is considered as one of the prototype models in describing a plethora of
interesting boundary phenomena, and as such has attracted much attention especially after the
derivation of the spectrum in the generic case where non-diagonal boundary magnetic fields
are applied [1-5]. Our objective in the present study is to derive from first principles the most
general physical boundary S-matrix for the XXZ chain in the non-critical (massive) regime.

Diagonal boundary S-matrices for the open XXZ model in the non-critical regime were
extracted in [6] using vertex-operator techniques, while parallel results were obtained in [7]
from the Bethe ansatz point of view (see, e.g., [8—10]). Similarly, diagonal reflection matrices
were derived in [11, 12] for the critical XXZ model corresponding to the sine-Gordon boundary
S-matrix for ‘fixed’ boundary conditions [13]. After the derivation of the exact spectrum and
Bethe equations for the XXZ chain with non-diagonal boundaries the generic boundary S-
matrix for the critical XXZ chain was computed in [14, 15] corresponding to the boundary
S-matrix of sine-Gordon model [13] for ‘free’ boundary conditions. A relevant discussion
on the generic breather boundary S-matrix within the XXZ framework may also be found in
[14]. Note also that analogous results regarding diagonal and non-diagonal solitonic boundary
S-matrices were formulated in [16, 17] using the so-called nonlinear integral equation (NLIE)
method [18].

To extract the generic boundary S-matrix for the non-critical XXZ model we follow the
logic of [14], i.e. we focus on the open chain with a trivial left boundary and a generic non-
diagonal right boundary associated with the full K-matrix [13, 19]. As also noted in [14]
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the main advantage of the approach adopted —considering special boundary conditions—
is that one eventually deals with a simple set of Bethe ansatz equations similar to those of
the XXZ chain with two diagonal boundaries. Thus all relevant computations are drastically
simplified (see also [14]), and one may follow the logic described in [7, 12, 20, 21] for
purely diagonal boundary magnetic fields. Ultimately, the boundary S-matrix eigenvalues
are extracted directly from the Bethe equations and are expressed in terms of I',-functions
(g = e™") [22] as in [6, 7], where only diagonal boundaries are assumed. In the isotropic
limit ¢ — 1, the corresponding rational boundary S-matrix for the XXX open chain is also
recovered [23].

2. Bethe ansatz and boundary S-matrix

Before we proceed with the Bethe ansatz analysis it will be useful for our purposes here to
give the explicit expressions of the right and left boundary K-matrices that give rise to the
open Hamiltonian under consideration:

1 . X X y Yy P 4 N s1nh(77) Z
H= ~2 ;:1 (ai 074, +0; 07, +cosh(n)o; om) -7 cosh(n) + 1 oy
inh h inh '
sinh(n) cosh(n§) .« sinh(n) (cosh(nf)o7 +isinh(n6)a;) 2.1

4sinh(7€) ' 2sinh(yf)

where in the non-critical regime we are focusing here cosh(n) > 1, also o*>*% are the 2 x 2
Pauli matrices, and the boundary parameters &, «, 0 are the free parameters of the generic
K-matrix [13, 19], which will be introduced subsequently.

To obtain such a Hamiltonian we consider the open chain constructed using Sklyanin’s
formalism [24], with left boundary K* o< I and right boundary associated with the general
solution of the reflection equation [25] given in [13, 19], i.e.,

o= (UG e Yoy
The latter K-matrix has two eigenvalues given as follows:
£1(A) = 2k sin[n(A +ip™)]sin[n(A +ip7)]
£2(h) = 2icsinly (1 — ip")]sinln(h — ip7)] &
where the parameters p* are defined as:
+né
= icosh[n(p™ £ p7)I. 2.4

Note that we assume here the parametrization used in [13] in the sine-Gordon context, (see
also [14] and the references therein). Such a parametrization is also quite practical within
the Temberley—Lieb algebra framework [26]. The parameter 6 appearing in (2.2) may be
removed by means of a simple gauge transformation, that leaves the XXZ R-matrix invariant,
and henceforth we consider it for simplicity to be zero (see also [13, 14]). The K-matrix (2.2)
may be easily diagonalized by virtue of a constant (A-independent) gauge transformation:

diag(e1 (), £2(2) = M~ (p*, pHKGIM(p*, p7) (2.5)
where M is defined as
. 1 1
Mp™.p) = <i en(p™+p7) ien(p*+p)> : (2.6)
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Note that the above transformation modifies dramatically the XXZ R-matrix, so it is not possible
to simply implement a global gauge transformation changing the basis in order to diagonalize
the open transfer matrix as in, e.g., [27]. It is also worth pointing out the similarity between
the matrix M(p*, p~) and the local gauge transformation employed for the diagonalization
of the open XXZ transfer matrix with non-diagonal boundaries [1, 28, 29].
We recall now the exact Bethe ansatz equations for the open XXZ chain in the case of
a right non-diagonal boundary and a left trivial diagonal. The Bethe equations in this case
reduce to the following simple form (see also [14]):
)] 2N+1
)]

sin [n()»i — %(Zp+ + 1))] sin [7]()»[ — %(Zp’ + 1))] cos [17 ()»,- + %)] ( sin [n(ki +
(2.7)

=

sin[n(x; + $@p* +1))] sin[n (A + 22p~ + D) ] cos[n (h; — 1) ] \'sin[n (1 —

ﬁ sin[n(h; — A +1)] sin[n(h; + A, +1)]
Lsin[nGu — A; — DI sin[n(h +4; — D]

et

J
We consider here, without loss of generality n > 0, pjE > % and Re (Ay) € [O, 271_77])“" # 0, 2”—ﬂ
(see, e.g., [20] for details on this restriction). For relevant results on various representations
of U, (sly) see [28-30].
As pointed out in [14] the integer M is associated with a non-local conserved quantity S,
which has the same spectrum as S° (for more details we refer the interested reader to [14, 28]
and references therein), i.e.,

N
M= -5, 2.8)

the subscript ¢ stands for the eigenvalue.

Our objective now is to explicitly derive the physical boundary S-matrix, and in particular
the relevant overall physical factor, which provides in general significant information on the
existence of boundary bound states. We define the boundary S-matrices k* by the quantization
condition [10, 20]

@2PON k= — 1)[7) = 0. (2.9)

Here A is the rapidity of the ‘hole’ —particle-like excitation and p(X) is the momentum of the
hole.

The density of a state is obtained in a standard way from the Bethe ansatz equations after

taking the log and the derivative [7, 9, 10, 20, 21]. More precisely, the Fourier transform of
the density for the one-hole state turns out to be

6 = 2¢ i a (@) iwh —iwk
65(w) = 2&(w) + N 1+63@) (et + 7'M
1 A
+ N1t [a1() + G2(w) + b1 (@) — Gzp-41 (@) — Gapre1 ()], (2.10)

where we define the following Fourier transforms

A — o—mlo| P _ ws A _ ar(w) _ 1
ap(w) =e ; by(w) = (—)"an (), é(w) = [+ar@)  2cosh(2) 2.1
2

where € (1) corresponds also to the energy of the particle-like excitation. The similarity of the
latter formula (2.10) with the one obtained in the case of two diagonal boundaries [7, 20] is
indeed noticeable. This is a crucial point enabling a simplified derivation of the boundary S-
matrix. In our case both terms depending on pT are assigned to the right boundary, otherwise
one follows the logic of the fully diagonal case (see e.g. [7, 20]).
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The boundary matrix k~, of the generic form (2.2) has two eigenvalues k;, whereas
the left boundary matrix is trivial k*(X) = ko(%)I. From the density (2.10), the quantization
condition (2.9) and recalling that e (A) = 217[ d’(’](;) we can explicitly derive the quantities ko, ki »
(see, e.g. [7, 20, 21] for more details). Actually, the eigenvalues k; (A, pi) and k> (A, p +) may
be seen as the boundary scattering amplitudes for the one particle-like excitation with S = +%
and S = —5 respectlvely (see also [14] for more details).

We ﬁrst compute the eigenvalue ki, which is expressed in terms of the I'; (x)-function,
—the g-analogue of the Euler gamma function— (¢ = e~") defined [22] as

)
Using also the g-analogue of the duplication formula [22]
F,20T2(3) = 1 +¢)* 'Tp@)Te(x+ 1), (2.13)

we obtain the following result for the first eigenvalue k; (X, p*, p~) (up to a constant phase
factor):

ky(x, p*, p7) = 2« sin |:n(X+ %(2p+ — 1)>:| sin |:n<X+ %(Zp_ - 1)>:|

x ko(Mki (%, pHki (X, p7) (2.14)
where we define:
Tos (=2 + 1) Ty (2 41
k()()\,) _q—4l)u q® ( %L +14) qx(_Zii-i_ ) (215)
Fp(5+3) Te(F+1)
(i)~ 1*,]4(—1A Tex = 1) Tpe(2 +1ex+1)

kl ()N\'a .X) =

2 . 2.16
sin[n(X — 3Q@x = D)] Tpe(Z + 12x — 1)) Tpe(F2 + L2x + 1) 210

We turn now to the computation of the second eigenvalue k» (%, p*), corresponding to a one-
hole state with S = —3 We 1mplement the ‘duality’ transformation [14, 24], which modifies
the boundary parameters pT — —p¥ in the Bethe ansatz equations (2.7). This transformation
is the equivalent of deriving the Bethe ansatz equations starting from the second reference state
(the analogue of the ‘spin down’ state) [30, 31]. Then we conclude for the second eigenvalue:

k(. pt p) _ sin[n(A+1@p* —D)]sin[n(X+1i@2p~ —D)]
ko, pt,p7)  sin[n(A —i@p*—1)]sin[n(A — 12p~ = D)]

An alternative way to extract the second eigenvalue is instead of the ‘kink’ state with S = — 5,
—after implementing the duality transformation— to consider the anti-kink state consisting
of a hole and a two-string state. Such configurations have been utilized in deriving the
kink—antikink scattering amplitudes in the bulk XXZ model (see, e.g., [7]) as well as in open
XXZ chain with the most general boundary conditions [15], where the ‘duality’ p* — —p*
cannot be implemented for the derivation of the second eigenvalue of the boundary S-matrix.
Note that the term depending on the boundary parameters (2.16) is ‘double’ compared to the
diagonal case studied in [6, 7]. Analogous phenomenon occurs in the open critical XXZ chain
[14, 15] and the sine-Gordon model [13]. It is straightforward to see that in the diagonal limit
we recover the results of [6, 7]. Also, in the isotropic limit g — 1, T'y(x) — I'(x) and the
trigonometric functions turn to rational, hence the generic rational reflection matrix for the
open XXX spin chain is easily recovered (see also [23]).

2.17)

4
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It is finally convenient to rewrite the two eigenvalues in terms of ‘renormalized’ boundary
parameters p* defined as

| .
Pt =pt— —mod(f) (2.18)

then the similarity between (2.17) and the ratio of the ‘bare’ eigenvalues (2.3) becomes
apparent. We have actually derived the physical boundary S-matrix up to a gauge
transformation; indeed the S-matrix of the generic form (2.2) may be reproduced by:

k(h, p*, p7) = M(p*, p)diag(ki (), k2 G)M ™ (B*, pO), (2.19)

M is defined in (2.5). This concludes our derivation of the general boundary S-matrix for the
open XXZ chain in the non-critical regime.
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