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Abstract
The most general physical boundary S-matrix for the open XXZ spin chain in
the non-critical regime (cosh(η) > 1) is derived starting from the bare Bethe
ansatz equations. The boundary S-matrix as expected is expressed in terms of
�q-functions. In the isotropic limit the corresponding results for the open XXX
chain are also reproduced.

PACS number: 02.30.Ik

1. Introduction

The open XXZ model is considered as one of the prototype models in describing a plethora of
interesting boundary phenomena, and as such has attracted much attention especially after the
derivation of the spectrum in the generic case where non-diagonal boundary magnetic fields
are applied [1–5]. Our objective in the present study is to derive from first principles the most
general physical boundary S-matrix for the XXZ chain in the non-critical (massive) regime.

Diagonal boundary S-matrices for the open XXZ model in the non-critical regime were
extracted in [6] using vertex-operator techniques, while parallel results were obtained in [7]
from the Bethe ansatz point of view (see, e.g., [8–10]). Similarly, diagonal reflection matrices
were derived in [11, 12] for the critical XXZ model corresponding to the sine-Gordon boundary
S-matrix for ‘fixed’ boundary conditions [13]. After the derivation of the exact spectrum and
Bethe equations for the XXZ chain with non-diagonal boundaries the generic boundary S-
matrix for the critical XXZ chain was computed in [14, 15] corresponding to the boundary
S-matrix of sine-Gordon model [13] for ‘free’ boundary conditions. A relevant discussion
on the generic breather boundary S-matrix within the XXZ framework may also be found in
[14]. Note also that analogous results regarding diagonal and non-diagonal solitonic boundary
S-matrices were formulated in [16, 17] using the so-called nonlinear integral equation (NLIE)
method [18].

To extract the generic boundary S-matrix for the non-critical XXZ model we follow the
logic of [14], i.e. we focus on the open chain with a trivial left boundary and a generic non-
diagonal right boundary associated with the full K-matrix [13, 19]. As also noted in [14]
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the main advantage of the approach adopted —considering special boundary conditions—
is that one eventually deals with a simple set of Bethe ansatz equations similar to those of
the XXZ chain with two diagonal boundaries. Thus all relevant computations are drastically
simplified (see also [14]), and one may follow the logic described in [7, 12, 20, 21] for
purely diagonal boundary magnetic fields. Ultimately, the boundary S-matrix eigenvalues
are extracted directly from the Bethe equations and are expressed in terms of �q-functions
(q = e−η) [22] as in [6, 7], where only diagonal boundaries are assumed. In the isotropic
limit q → 1, the corresponding rational boundary S-matrix for the XXX open chain is also
recovered [23].

2. Bethe ansatz and boundary S-matrix

Before we proceed with the Bethe ansatz analysis it will be useful for our purposes here to
give the explicit expressions of the right and left boundary K-matrices that give rise to the
open Hamiltonian under consideration:

H = −1

4

N−1∑
i=1

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + cosh(η)σ z
i σ z

i+1

) − N

4
cosh(η) +

sinh(η)

4
σ z

N

+
sinh(η) cosh(ηξ)

4 sinh(ηξ)
σ z

1 − κ sinh(η)

2 sinh(ηξ)

(
cosh(ηθ)σ x

1 + i sinh(ηθ)σ
y

1

)
(2.1)

where in the non-critical regime we are focusing here cosh(η) > 1, also σx,y,z are the 2 × 2
Pauli matrices, and the boundary parameters ξ, κ, θ are the free parameters of the generic
K-matrix [13, 19], which will be introduced subsequently.

To obtain such a Hamiltonian we consider the open chain constructed using Sklyanin’s
formalism [24], with left boundary K+ ∝ I and right boundary associated with the general
solution of the reflection equation [25] given in [13, 19], i.e.,

K−(λ) =
(

sin[η(−λ + iξ)] eiηλ κ eηθ sin(2ηλ)

κ e−ηθ sin(2ηλ) sin[η(λ + iξ)] e−iηλ

)
. (2.2)

The latter K-matrix has two eigenvalues given as follows:

ε1(λ) = 2κ sin[η(λ + ip+)] sin[η(λ + ip−)]

ε2(λ) = 2κ sin[η(λ − ip+)] sin[η(λ − ip−)]
(2.3)

where the parameters p± are defined as:

e±ηξ

2κ
= i cosh[η(p+ ± p−)]. (2.4)

Note that we assume here the parametrization used in [13] in the sine-Gordon context, (see
also [14] and the references therein). Such a parametrization is also quite practical within
the Temberley–Lieb algebra framework [26]. The parameter θ appearing in (2.2) may be
removed by means of a simple gauge transformation, that leaves the XXZ R-matrix invariant,
and henceforth we consider it for simplicity to be zero (see also [13, 14]). The K-matrix (2.2)
may be easily diagonalized by virtue of a constant (λ-independent) gauge transformation:

diag(ε1(λ), ε2(λ)) = M−1(p+, p−)K(λ)M(p+, p−) (2.5)

where M is defined as

M(p+, p−) =
(

1 1
i eη(p++p−) i e−η(p++p−)

)
. (2.6)
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Note that the above transformation modifies dramatically the XXZ R-matrix, so it is not possible
to simply implement a global gauge transformation changing the basis in order to diagonalize
the open transfer matrix as in, e.g., [27]. It is also worth pointing out the similarity between
the matrix M(p+, p−) and the local gauge transformation employed for the diagonalization
of the open XXZ transfer matrix with non-diagonal boundaries [1, 28, 29].

We recall now the exact Bethe ansatz equations for the open XXZ chain in the case of
a right non-diagonal boundary and a left trivial diagonal. The Bethe equations in this case
reduce to the following simple form (see also [14]):

sin
[
η
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λi − i
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)]

sin
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λi + i

2 (2p+ + 1)
)] sin

[
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(
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(
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cos
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(
λi − i

2

) ]
(

sin
[
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(
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)]
sin

[
η

(
λi − i

2

) ]
)2N+1

= −
M∏

j=1

sin[η(λi − λj + i)]

sin[η(λi − λj − i)]

sin[η(λi + λj + i)]

sin[η(λi + λj − i)]
. (2.7)

We consider here, without loss of generality η > 0, p± > 1
2 and Re (λα) ∈ [

0, π
2η

]
λα �= 0, π

2η

(see, e.g., [20] for details on this restriction). For relevant results on various representations
of Uq(sl2) see [28–30].

As pointed out in [14] the integer M is associated with a non-local conserved quantity S,
which has the same spectrum as Sz (for more details we refer the interested reader to [14, 28]
and references therein), i.e.,

M = N

2
− Sε, (2.8)

the subscript ε stands for the eigenvalue.
Our objective now is to explicitly derive the physical boundary S-matrix, and in particular

the relevant overall physical factor, which provides in general significant information on the
existence of boundary bound states. We define the boundary S-matrices k± by the quantization
condition [10, 20]

(ei2p(λ̃)N k+k− − 1)|λ̃〉 = 0. (2.9)

Here λ̃ is the rapidity of the ‘hole’ –particle-like excitation and p(λ̃) is the momentum of the
hole.

The density of a state is obtained in a standard way from the Bethe ansatz equations after
taking the log and the derivative [7, 9, 10, 20, 21]. More precisely, the Fourier transform of
the density for the one-hole state turns out to be

σ̂s(ω) = 2ε̂(ω) +
1

N

â2(ω)

1 + â2(ω)
(eiωλ̃ + e−iωλ̃)

+
1

N

1

1 + â2(ω)
[â1(ω) + â2(ω) + b̂1(ω) − â2p−+1(ω) − â2p++1(ω)], (2.10)

where we define the following Fourier transforms

ân(ω) = e−ηn|ω|, b̂n(ω) = (−)ωân(ω), ε̂(ω) = â1(ω)

1 + â2(ω)
= 1

2 cosh
(

ω
2

) (2.11)

where ε(λ̃) corresponds also to the energy of the particle-like excitation. The similarity of the
latter formula (2.10) with the one obtained in the case of two diagonal boundaries [7, 20] is
indeed noticeable. This is a crucial point enabling a simplified derivation of the boundary S-
matrix. In our case both terms depending on p± are assigned to the right boundary, otherwise
one follows the logic of the fully diagonal case (see e.g. [7, 20]).
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The boundary matrix k−, of the generic form (2.2) has two eigenvalues k1,2 whereas
the left boundary matrix is trivial k+(λ̃) = k0(λ̃)I. From the density (2.10), the quantization
condition (2.9) and recalling that ε(λ) = 1

2π

dp(λ)

dλ
we can explicitly derive the quantities k0, k1,2

(see, e.g. [7, 20, 21] for more details). Actually, the eigenvalues k1(λ̃, p±) and k2(λ̃, p±) may
be seen as the boundary scattering amplitudes for the one particle-like excitation with S = + 1

2
and S = − 1

2 , respectively (see also [14] for more details).
We first compute the eigenvalue k1, which is expressed in terms of the �q(x)-function,

—the q-analogue of the Euler gamma function— (q = e−η) defined [22] as

�q(x) = (1 − q)1−x

∞∏
j=0

[
(1 − q1+j )

(1 − qx+j )

]
, 0 < q < 1. (2.12)

Using also the q-analogue of the duplication formula [22]

�q(2x)�q2

(
1
2

) = (1 + q)2x−1�q2(x)�q2

(
x + 1

2

)
, (2.13)

we obtain the following result for the first eigenvalue k1(λ̃, p+, p−) (up to a constant phase
factor):

k1(λ̃, p+, p−) = 2κ sin

[
η

(
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i

2
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)]
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[
η

(
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i

2
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)]
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where we define:
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k1(λ̃, x) = (2κ)−
1
2
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We turn now to the computation of the second eigenvalue k2(λ̃, p±), corresponding to a one-
hole state with S = − 1

2 . We implement the ‘duality’ transformation [14, 24], which modifies
the boundary parameters p± → −p± in the Bethe ansatz equations (2.7). This transformation
is the equivalent of deriving the Bethe ansatz equations starting from the second reference state
(the analogue of the ‘spin down’ state) [30, 31]. Then we conclude for the second eigenvalue:

k1(λ̃, p+, p−)

k2(λ̃, p+, p−)
= sin

[
η
(
λ̃ + i

2 (2p+ − 1)
)]

sin
[
η
(
λ̃ + i

2 (2p− − 1)
)]

sin
[
η
(
λ̃ − i

2 (2p+ − 1)
)]

sin
[
η
(
λ̃ − i

2 (2p− − 1)
)] (2.17)

An alternative way to extract the second eigenvalue is instead of the ‘kink’ state with S = − 1
2 ,

—after implementing the duality transformation— to consider the anti-kink state consisting
of a hole and a two-string state. Such configurations have been utilized in deriving the
kink–antikink scattering amplitudes in the bulk XXZ model (see, e.g., [7]) as well as in open
XXZ chain with the most general boundary conditions [15], where the ‘duality’ p± → −p±

cannot be implemented for the derivation of the second eigenvalue of the boundary S-matrix.
Note that the term depending on the boundary parameters (2.16) is ‘double’ compared to the
diagonal case studied in [6, 7]. Analogous phenomenon occurs in the open critical XXZ chain
[14, 15] and the sine-Gordon model [13]. It is straightforward to see that in the diagonal limit
we recover the results of [6, 7]. Also, in the isotropic limit q → 1, �q(x) → �(x) and the
trigonometric functions turn to rational, hence the generic rational reflection matrix for the
open XXX spin chain is easily recovered (see also [23]).
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It is finally convenient to rewrite the two eigenvalues in terms of ‘renormalized’ boundary
parameters p̃± defined as

p̃± = p± − 1

2
mod

(
iπ

η

)
(2.18)

then the similarity between (2.17) and the ratio of the ‘bare’ eigenvalues (2.3) becomes
apparent. We have actually derived the physical boundary S-matrix up to a gauge
transformation; indeed the S-matrix of the generic form (2.2) may be reproduced by:

k(λ, p̃+, p̃−) = M(p̃+, p̃−)diag(k1(λ), k2(λ))M−1(p̃+, p̃−), (2.19)

M is defined in (2.5). This concludes our derivation of the general boundary S-matrix for the
open XXZ chain in the non-critical regime.
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